Updates on KCL Toxicity Testing of Dreissenid Mussels

Christine M. Moffitt
USGS Cooperative Fish and Wildlife Research Unit

Kelly Stockton-Fiti KASF Consulting

Report to Columbia Basin Team
December 2016

"/luriate of Potash (KCI) as a RR Control Tool?

 Disinfection of equipment, boats, or fish hauling trucks

Prevention of settlement or establishment

 Response to introduction in open or contained waters

• Low risk to non-molluscan species, fish, vegetation, or human exposure

KCI Efficacy – Zebra mussels

- Veliger zebra mussels KCI (~ 750 mg/L) tested in fish hauling followed by low dose of formalin to reduce risk of veliger transport showed no harm to fish with short term exposure (Edwards et al. 2000)
- Byssal zebra mussels ~100 mg/L for 30 days in contained field trials.
 - Millbrook Quarry, Virginia (Fernald and Watson 2014).
 - Lake Winnipeg, Manitoba and Christmas Lake, MN (not completely successful)

U of I Studies at WBNFH 2015

- May June, & August Sept
- Static exposure to KCI of veligers and byssal stage
 - Byssal stage 100 and 200 mg/L
 - Veligers 960 mg/L no formalin (approx 10X byssal treatment.
- Tests with Colorado River water
 U of I groundwater
 & Snake River water

Studies in Lake Ontario

- October Dec 2015
- Water and mussels from Lake Ontario Woupoos Marina
- Static exposure to KCI with renewal after 48 h
 - Byssal stage 100 mg/L
 - Veligers 960 mg/L

Variations in Mortality to KCI Among Water Sources 2015

The second secon

- WB Colorado <u>little to no</u> mortality over 24 h
- Lethal Time 50%
 - UI water = 2.7 h
 - ON water = 3.7 h
 - SR water = 5.8 h

Byssal Quagga in KCI?

Comparison of Water Sources

Conclusions and relevance of trials with veligers to assess vulnerability

 Response of veligers to ~ 10 X higher concentrations over recommended treatment for byssal for 30 d can be a model for adult response at lower concentrations

Shorter duration, and easier to monitor

Studies on Mississippi River August 2016

Veliger trials – 960 mg/L 2015-2016

- May June August Sept, October 2015
 - WBNFH Colorado River, Snake River and UI ground water, Lake Ontario at Picton
 - KCl (analytical grade) @ ~ 20°C
 - Exposure times of 1, 3, 4, 5, 8, 10, 12, 24 hours

 Fast green dye used to assist assessment of mortality

Veliger trials – 960 mg/L 2016

- Fairport Hatchery, Mississippi River, August 2016
 - KCl (analytical grade) @ ~ 20°C
 - Exposure times 3, 6, 12, 24 h
 - Fast green dye used to assist assessment of mortality

U of Idaho and Colorado River 2015 with Mississippi River, 2016

Mississippi River conductivity equal to U of Idaho groundwater had even lower survival at 3 h than U of Idaho

Water Quality Parameters Considered

- Water quality differences across the range of water sources
 - Salinity, pH, DO, Specific conductivity, TDS
 - Metals profile ICP
 - Dissolved and total
 - With and without KCl

Summary of WQ Measures all Locations Tested

Source	Temp (°C)	рН	Specific conductivity (mS/cm)	TDS (mg/L)	Salinity ppt
U Idaho	22.2	8.1	0.37	0.25	0.18
Snake					
River	22.8	8.1	0.47	0.31	0.23
Colorado		7.9 -			
River	22.2	8.2	1.08 - 1.02	0.67	0.51
Lake					
Ontario	20.0	8.3	0.33	0.21	0.15
Mississippi					
River	20.4	8.2	0.37	.24	0.18

Summary of Measures all Locations Tested

Source	Temp (°C)	рН	Specific conductivity (ms/cm)	TDS (mg/L)	Salinity ppt
U Idaho	22.2	8.1	0.37	0.25	0.18
Snake					
River	22.8	8.1	0.47	0.31	0.23
Colorado		7.9 -			
River	22.2	8.2	1.08 – 1.02	0.67	0.51
Lake					
Ontario	20.0	8.3	0.33	0.21	0.15
Mississippi					
River	20.4	8.2	0.37	.24	0.18

Comparison Survival in U of Idaho (Conductivity = 0.37) and Colorado River (Conductivity ~ 1.0) 2015

ICP Metals Profile of Water Sources

No difference in K+ levels of test waters after KCl addition

ICP Metals Profile of Water Sources All Locations

No difference in K+ levels of test waters after KCl addition

As with studies in 2015, NaCl added to base water to reach conductivity of Colorado River

- Baseline 0.37 mS/cm
- Added NaCl to achieve: 0.5, 1.0, and 1.5

Time to Mortality vs Log Conductivity

Time Interval with 100% Mortality

Sizes of Veliger Tested in Trials

2016 Trials

Conclusions

- Osmotic balance in membranes involved active exchange of Na and K
- If higher Na+ is in source water, mortality from KCl is reduced.
- Models held with zebra mussels, but size and acclimation to elevated temperatures of Mississippi River likely affect rate of mortality, and zebra mussels were more vulnerable.
- Additional analysis of tests of Edwards protocol with bench and lab studies not yet completed.

Montana RR Treatment Options

 Conductivity range of Tiber Reservoir from water quality reports appears to be mean from 0.3 – 0.45

mS/cm

Thus treatment looks plausible with KCI

Recommend metals profile sampling

Acknowledgements

- Funding Utah Division Wildlife Resources, USFWS, USGS, PSMFC, Mississippi River ANS Panel
- Staff and facilities at WBNFH, manager Mark Olson and Asst Mgr. Tom Frew
- Staff of Fairport State Fish Hatchery, Iowa DNR
- Dave Parrish IDFG
- Bob Kibler FWS

