

eDNA Monitoring Research

- USGS round-robin assay evaluation
- USGS streamgage eDNA sampling

Adam Sepulveda (asepulveda@usgs.gov)
USGS Northern Rocky Mountain Science Center

USGS Upper Midwest Environmental Science Center USGS Forest and Rangeland Ecosystem Science Center USGS Western Fisheries Research Center

Need

- 1. How to sample?
- 2. Where to sample?

Round-robin evaluation of eDNA assays

eDNA is powerful early detection tool but...

Uncertainty associated with eDNA results

- Indirect method that detects DNA
 - DNA presence ≠ Species presence
- Often impossible to corroborate with direct methods
- Newer science with checkered early history

Towards reducing uncertainty of eDNA results...

Identify lab-based protocols that provide repeatable & reproducible results.

- Lab environment can be totally controlled
- Repeatable: same sample & conditions = same results
- Reproducible: same sample, different conditions same result
- Cornerstone good science & diagnosis
 - confidence that initial results not obtained by chance or errors.

Approach, 5 assays & 4 labs

- Public, probe-based quantitative PCR assays
 - 1. DRE16S: zebra & quagga
 - 2. DRE2: zebra
 - 3. ZebCOI: zebra
 - 4. ZebCYT: zebra
 - 5. DREQM: quagga
- Four USGS labs
 - Boise, ID; Bozeman, MT; LaCrosse, WI; Seattle, WA

Approach

With mussels

- Seneca Lake (ZM & QM)
- Lake Michigan (zm & QM)
- San Justo Res (ZM)
- Lake Mead (QM)

No mussels, spiked with ZM + QM DNA

- Yellowstone River
- Jackson Lake
- Columbia River

Approach

- Partners collected samples using SOP
- Double-blind
 - Sample prep
 - Sample analysis
- Identical samples
- 2832 samples, 8497 qPCR reps

Repeatability ~ 90%

Likelihood that two identical samples analyzed under the same conditions (same assay or same lab) will yield same result

1 = results are the same

Assay	Mean	CI95
DRE16S	0.92	0.03
DREQM	0.93	0.02
DRE2	0.85	0.03
ZEBCOI	0.91	0.03
ZEBCYT	0.93	0.03
Lab	Mean	Cl95
1	0.93	0.03
2	0.92	0.03
3	0.92	0.03
4	0.86	0.04

Reproducibility ~ 0.90

Likelihood that two identical samples analyzed under different conditions (assay or lab) will yield same result

• 1 = results are the same

	Mean	CI95	
Assays	0.92	0.01	
Labs	0.92	0.01	
Assay	DRE16S	ZEBCOI	ZEBCYT
DRE2	0.90	0.90	0.90
ZEBCYT	0.93	0.93	
ZEBCOI	0.93		
DREQM	0.95		
Lab	4	3	2
1	0.89	0.93	0.94
2	0.90	0.93	
3	0.87		

Conclusions & Next Steps

- High probability (~90%) that identical samples analyzed under the same or different assays or labs will yield the same result
- Dreissenid mussel eDNA: increase confidence / decrease uncertainty in results
- Benchmark for new assays and /or labs
- Next steps: evaluate eDNA field sampling protocols

USGS Streamgage eDNA sampling

- 10,000+ USGS streamgages
- USGS hydro techs visit ~ monthly
- Incorporate eDNA sampling into visits
 - Cheap and effective way to help Safeguard the West?

USGS streamgages below reservoirs

- Reservoirs
 - invasion hotspots
 - critical infrastructure
- USGS gages often locate below reservoirs
- eDNA at gages
 - Mussel (-), vulnerable
 - Mussel (+)

Objectives

- 1. eDNA surveillance for dreissenid mussels
- 2. Additional cost of incorporating eDNA into USGS streamgage program
- 3. Are streamgages adequately located for biosurveillance of upstream reservoirs?
 - What influences increase detection rates?

Approach

- Hydro-techs trained in SOP
 - 3 10 water samples per visit
 - May September 2018
 - Shipped/analyzed at USGS LaCrosse, WI
- Target species
 - Dreissenid mussels
 - Likely all no-detects... hard to learn
 - Kokanee salmon & Yellow perch
 - Reservoir 'obligates' at varying abundance
 - Used these results to learn

Results

1. Dreissenid mussel DNA

- Mussel pos. waters: all samples positive
- Mussel neg. waters: no sample met criteria for being scored as positive

2. Additional costs:

- \$400 500 for three samples at a streamgage
- Additional 2 hr of hydro-tech time
- 3. Streamgages adequately located
 - Kokanee and yellow perch DNA: yes

Results: detection rate in 1 sample

Kokanee

Yellow perch

Results: how many samples?

Kokanee

diminishing returns > 6

Yellow perch

- Less certain, but likely
 - > 10

Take homes

Streamgage eDNA sampling

- always detected mussel DNA when mussels are present
- sensitive even when fish at low abundance
- cost-effective

Next steps

- What are we missing by limiting to streamgage?
 - Send USGS hydro techs to reservoirs rather than, or in addition to, streamgage?

